首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18355篇
  免费   3326篇
  国内免费   1670篇
化学   12815篇
晶体学   173篇
力学   1026篇
综合类   67篇
数学   2062篇
物理学   7208篇
  2024年   17篇
  2023年   397篇
  2022年   413篇
  2021年   615篇
  2020年   739篇
  2019年   750篇
  2018年   719篇
  2017年   574篇
  2016年   964篇
  2015年   825篇
  2014年   1050篇
  2013年   1388篇
  2012年   1721篇
  2011年   1779篇
  2010年   1170篇
  2009年   1090篇
  2008年   1198篇
  2007年   1047篇
  2006年   996篇
  2005年   792篇
  2004年   608篇
  2003年   430篇
  2002年   439篇
  2001年   325篇
  2000年   261篇
  1999年   370篇
  1998年   270篇
  1997年   290篇
  1996年   283篇
  1995年   242篇
  1994年   209篇
  1993年   213篇
  1992年   142篇
  1991年   158篇
  1990年   129篇
  1989年   99篇
  1988年   88篇
  1987年   69篇
  1986年   68篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   23篇
  1980年   26篇
  1978年   13篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar"structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns.The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively.The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material.In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.  相似文献   
73.
74.
75.
The catalytic performances of Co‐Rh/Fe3O4 catalysts modified with phosphine ligands (PPh3) and its analogues on dicyclopentadiene hydroformylation were evaluated. Among these catalysts, Co‐Rh/Fe3O4 modified with tris(p‐trifluoromethylphenyl)phosphine was determined to be effective for monoformyltricyclodecanes production, whereas Co‐Rh/Fe3O4 modified with PPh3 or tri‐p‐tolylphosphine was effective for the diformyltricyclodecanes production. To investigate the ligand effects, the complex catalyst system (Co‐Rh/Fe3O4 and phosphine ligand) was subjected to pretreatment with syngas and then characterized by thermogravimetry and differential thermal analysis (TG‐DTA). It was determined that the threshold decomposition temperature reflected the corresponding Rh‐phosphine interaction strength, affecting the catalytic selectivity toward different products. A weak Rh‐phosphine interaction was desirable to produce monoformyltricyclodecanes with fast reaction kinetics, whereas a strong Rh‐phosphine complex was required for the synthesis of diformyltricyclodecanes. In addition to the selectivity rule shown in the PPh3 series, experiments with other ligands also demonstrated similar selectivity trends.  相似文献   
76.
Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spectrometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.  相似文献   
77.
Lipid metabolism has a significant function in the central nervous system and Alzheimer's disease (AD) is an age-related senile disease characterized by central nerve degeneration. The pathological development of AD is closely related to lipid metabolism disorders. To reveal the influence of Kai-Xin-San (KXS) on lipid metabolism in APP/PSI transgenic mice and potential therapeutic targets for treating AD, brain tissue samples were collected and analyzed by high-throughput lipidomics based on UPLC–Q/TOF-MS. The collected raw data were processed by multivariate data analysis to discover the potential biomarkers and lipid metabolic profiles. Compared with the control wild-type mouse group, nine potential lipid biomarkers were found in the AD model group, of which seven were up-regulated and two were down-regulated. Orally administrated KXS can reverse the changes in these potential biomarkers. Compared with the model group, a total of six differential metabolites showed a recovery trend and may be potential targets for KXS to treat AD. This study showed that high-throughput lipidomics can be used to discover the perturbed pathways and lipid biomarkers as potential targets to reveal the therapeutic effects of KXS.  相似文献   
78.
Lonicerae Japonicae Flos (LJF) is a typical herbal medicine and is used as a functional food. LJF, which has complex chemical compounds, has various biological effects. The global metabolomics, focusing on both the endogenous and exogenous metabolites, have not yet been investigated for LJF in normal healthy rats using LC–MS. In this study, plasma metabolomics was analyzed after the administration of LJF at different time intervals, and the exogenous metabolites were identified. Partial least squares discriminant analysis showed significant differences in chemical content in the dosed rats. Cholic acid, indoleacrylic acid, indolelactic acid, hippuric acid, N-acetyl-phenylalanine, and N-acetyl-serotonin significantly accumulated in the dosed rats. Lysophosphatidylethanolamine and lysophosphatidylcholine content, including plasmalogen, increased. There were 25 components of LJF, including 15 prototypes and 10 metabolites, that were identified. The 15 prototypes included phenolic acids, flavonoids, and iridoids, and their contents decreased with an increase in the administration time. Glucuronidation and sulfation of polyphenols were found for LJF. The exogenous glucuronide and sulfate metabolites—including dihydrocoumaric acid-sulfate, dihydrocaffeic acid-sulfate, dihydroferulic acid-sulfate, apigenin-glucuronide, apigenin-glucuronide-sulfate, isorhamnetin-glucuronide-sulfate, and others—were identified with a neutral loss of 176 and 80, respectively. The metabolic differences found in the study may serve as biomarkers of LJF consumption and promote the understanding of the mechanism of action of LJF.  相似文献   
79.
This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.  相似文献   
80.
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号